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This paper deals with geometrically nonlinear vibrations of sandwich beams with

viscoelastic materials. For this purpose, a new finite element formulation has been

developed, in which a zig-zag model is used to describe the displacement field. The

viscoelastic behaviour is handled by using hereditary integrals and their relationships

method is also developed. To demonstrate its abilities, various problems of nonlinear

vibrations of sandwich beams are considered. First, the results derived from the

proposed approach are compared with those of nonlinear dynamic analyses using direct

time integration and to experimental data. Then, the influence of the vibration

amplitude on the damping properties of sandwich beams is investigated. The effect of

an initial axial strain is also examined.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Control of noise and vibration is an important issue in structural engineering. Viscoelastic materials have long been
recognized as excellent vibration dampers; viscoelastic coatings and tapes have frequently been applied to control flexural
vibration. If a thin viscoelastic layer is sandwiched between two stiff elastic layers, even greater damping can be obtained
with only a slight increase in weight. Due to the low stiffness of the viscoelastic material, the sandwich construction
induces a shearing motion in the core layer, leading to very effective damping properties [1].

Considerable theoretical and experimental work has been done on the linear dynamic behaviour of sandwich structures
with viscoelastic layers. In order to predict the dynamic response and the damping properties of these structures, it is
necessary to accurately describe the shear strain in the viscoelastic layers. For this reason, equivalent single-layer theories,
such as the classical laminate theory and the first-order shear deformation theory, are generally inadequate [2]. More
refined kinematic models devoted to sandwich structures have therefore been proposed. Fundamental early work was
conducted by Kerwin [1], who suggested a formula for estimating the loss factor of three-layer sandwich beams. Several
later analytical studies were dedicated to simple structures [3–7], and finite element computations have also been
proposed to deal with engineering problems in structural dynamics [8–13]. A common feature of the theories
underpinning these works is to assume a displacement field for each layer. Governing equations are obtained by looking at
the equilibrium of each layer, together with the interface conditions. This kind of model is known as a layerwise or a
zig-zag model.
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When structures undergo severe dynamic loadings, large-amplitude vibrations arise and geometric nonlinearity may
induce a dynamic behaviour that is significantly different from the one predicted by linear structural theories. It is well
known, for example, that resonance frequencies and mode shapes are generally amplitude-dependent. The study of the
nonlinear vibration of structures has attracted many researchers, but only a few papers have dealt with sandwich
structures. Kovac et al. [14], Hyer et al. [15], and Daya et al. [16] performed analytical studies of the nonlinear vibration of
sandwich beams. In these studies, frequency–amplitude relationships were obtained by means of the one-mode Galerkin’s
procedure and the harmonic balance method. The studies of Kovac et al. [14] and Hyer et al. [15] also included
experiments, which produced reasonable agreement with the theory. Nevertheless, because these analytical models are
based on the one-mode Galerkin’s method, they are likely to provide accurate results only near a resonance frequency.
Moreover, the effect of large vibration amplitudes on the mode shape is disregarded. In order to overcome these
limitations, numerical techniques such as finite elements must be used. Direct time-integration analyses using, for
instance, Newmark’s method can be applied to compute the nonlinear dynamic response of structures with viscoelastic
parts [17,18]. However, if the steady-state response to harmonic excitation is sought, time domain techniques have high
computational requirements. Consequently, these techniques are not very appropriate for investigating the forced
response within a large range of excitation frequencies. For the class of problems where the motion can be assumed to be
periodic in time, frequency-domain methods such as the harmonic balance method allow us to achieve shorter
computation times. In the case of homogeneous beams and plates, the combined use of the harmonic balance and finite
element methods has proved to be a versatile and efficient technique for computing the response in the frequency domain
[19–23]. Iu et al. [24] proposed a numerical model for the nonlinear vibration of multilayer sandwich beams. In their
approach, the structure is discretised in space by the finite element method, and the periodic solutions of the resulting set
of ordinary differential equations are obtained by using the harmonic balance method. Iu and Cheung [25] applied a similar
technique to study the nonlinear vibration of sandwich plates. Nevertheless, in these papers [24,25], only viscous damping
(in which damping forces are proportional to the absolute velocity) is taken into account. This kind of model is generally
unable to accurately describe the energy dissipation behaviour of real structural viscoelastic materials such as plastics or
polymers.

From the reviewed works, it appears that it remains challenging to develop an efficient frequency-domain method that
is able to handle both viscoelasticity and geometric nonlinearity. Designing such a method is the main aim of this paper.
Attention is focused on three-layer sandwich beams with a viscoelastic core, but the proposed methodology can be applied
to more complex structures as well. In our approach, the constitutive properties of the viscoelastic core are handled by
using hereditary integrals and their relationships with complex moduli. The solution procedure is based on the harmonic
balance technique and the finite element method. Here, the harmonic balance method is used to obtain an approximate
variational equation of motion in the frequency domain. Then, a finite element approximation in space is introduced. The
developed finite element method has been implemented in the commercial software ABAQUS. Comprehensive numerical
tests for the forced response of sandwich beams are reported. In order to provide a validation of the proposed method, the
results are compared with those of fully nonlinear computations using direct time integration and with experimental data.
Also, results about the effect of large vibration amplitudes on the damping properties of sandwich beams are presented.
Finally, the nonlinear vibration of a pre-stressed beam is analysed.

2. Governing equations

We focus on three-layer symmetrical beams with a viscoelastic core. L is the length of the beam; hf and hc are the
thicknesses of the face and core layers, respectively; and x and z are the axial and transverse coordinates, respectively. The
mid-plane of the beam is set to coincide with the origin of the z-axis.

A layerwise model, in which the face layers are assumed to behave as Euler–Bernoulli beams and the core layer is
modelled according to Timoshenko’s theory, is used to construct the displacement field. The accuracy of this formulation in
the case of sandwich beams with soft cores has been established in several studies [2,26,27]. Moreover, the following
hypotheses are formed:
�
 The three layers are perfectly bonded and in a plane stress state.

�
 The out-of-plane displacement does not depend on the transverse coordinate.

�
 The face layers are isotropic elastic. In addition, the two faces have the same Young’s modulus.

�
 The core layer has an isotropic frequency-dependent viscoelastic behaviour. However, the Poisson ratio is constant. This

assumption, often adopted in the literature, implies that the shear and Young’s moduli are proportional.

2.1. Displacements and strains

The longitudinal displacement Ui at any point in the elastic layers is given by

Uiðx,z,tÞ ¼ uiðx,tÞ�ðz�ziÞ
@wðx,tÞ

@x
, i¼ 1, 3, (1)
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where zi and ui(x,t) are the z-coordinate and the axial displacement of the mid-plane of the ith layer, respectively, and w is
the transverse displacement.

The axial displacement U2 of a point in the central layer can be written as

U2ðx,z,tÞ ¼ uðx,tÞþzbðx,tÞ, (2)

where u(x,t) is the axial displacement of a point on the plane z=0 and b(x, t) is the rotation of the normal to the sandwich
mid-plane.

The following nonlinear strain–displacement relationships, which account for small strains and moderate rotations, are
used:

eiðx,z,tÞ ¼
@uiðx,tÞ

@x
þ

1

2

@wðx,tÞ

@x

� �2

�ðz�ziÞ
@2wðx,tÞ

@x2
, i¼ 1, 3,

e2ðx,z,tÞ ¼
@uðx,tÞ

@x
þ

1

2

@wðx,tÞ

@x

� �2

þz
@bðx,tÞ

@x
,

g2ðx,tÞ ¼
@wðx,tÞ

@x
þbðx,tÞ, (3)

where ei is the axial strain in the ith layer and g2 is the shear strain in the core.
Assuming perfect bonding between layers, the axial displacements of the face layers may be written as a function of the

above defined variables u and b:

u1ðx,tÞ ¼ uðx,tÞþ
hc

2
bðx,tÞ�

hf

2

@wðx,tÞ

@x

� �
,

u3ðx,tÞ ¼ uðx,tÞ�
hc

2
bðx,tÞ�

hf

2

@wðx,tÞ

@x

� �
: (4)

2.2. Constitutive relations

The expressions of the axial forces Ni and the bending moments Mi in the two elastic faces can be written as

Ni ¼ Ef Sf
@ui

@x
þ

1

2

@w

@x

� �2
 !

,

Mi ¼�Ef If
@2w

@x2
, i¼ 1, 3, (5)

where Sf and If are the cross-section area and the second moment of the face layers. Ef is the Young’s modulus.
As in Refs. [15,16], the behaviour of the core layer is given by a hereditary integral:

s2ðx,z,tÞ ¼

Z t

�1

Yðt�tÞ @e2ðx,z,tÞ
@t

dt¼ Y�
@e2

@t
,

t2 ¼
Y

2ð1þncÞ
�
@g2

@t
, (6)

where s2 and t2 are the axial and shear stresses in the core layer, Y is the relaxation function of the material, and nc is the
Poisson ratio. * denotes the classical convolution product. From the strain–displacement relations (3) and the constitutive
law (6), the following expressions of the axial force N2, the bending moment M2, and the shear force T in the core layer are
obtained:

N2 ¼ ScY�
@2u

@x@t
þ
@2w

@x@t

@w

@x

 !
,

M2 ¼ IcY�
@2b
@x@t

,

T ¼
Sc

2ð1þvcÞ
Y�

@2w

@x@t
þ
@b
@t

 !
, (7)

where Sc and Ic are the cross-section area and the second moment of the core layer, respectively. For sandwich beams with
soft cores, the shear stress is almost constant throughout the thickness of the core layer [2]. Therefore, it is not necessary to
introduce a shear correction factor.

The present paper is focused on frequency-domain analyses. In this scope, the constitutive law will be used when the
strain is a combination of several harmonics:

e2ðx,z,tÞ ¼
Xn

k ¼ 0

e2ðx,z,kÞejkotþe2 ðx,z,kÞe�jkot

2

� �
, (8)
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where � means the conjugate of a complex number and j is the imaginary unit. In this case, the axial stress can be
described by the classical complex Young’s modulus representation:

s2ðx,z,tÞ ¼
Xn

k ¼ 0

s2ðx,z,kÞejkotþs2 ðx,z,kÞe�jkot

2

� �
,

s2ðx,z,kÞ ¼ EcðkoÞe2ðx,z,kÞ,

EcðkoÞ ¼ jko
Z þ1

0
YðtÞe�jkot dt, (9)

where Ec, the complex Young’s modulus, is the Fourier transform of the relaxation function. Corresponding expressions can
be similarly obtained for the shear stress.

2.3. Variational formulation

Using the virtual work principle, a variational formulation of the problem can be written as follows:

dWint�dWextþdWkin ¼ 0, (10)

where dWint, dWext, and dWkin are the virtual works of internal, external, and inertial forces, respectively. The virtual work
of internal forces for the whole beam is written by assembling the contributions of each layer:

dWint ¼
X3

i ¼ 1

Z L

0
Ni

@dui

@x
þ
@w

@x

@dw

@x

� �
dx

þ

Z L

0
�ðM1þM3Þ

@2dw

@x2
þM2 @db

@x

 !
dxþ

Z L

0
T
@dw

@x
þdb

� �
dx: (11)

Only transverse external forces are considered, and rotational inertia is neglected. Thus, the expressions of dWext and
dWkin are

dWext ¼

Z L

0
Fdw dx with Fðx,tÞ ¼ Fdðx,tÞþFiðtÞdðx�xiÞ,

dWkin ¼ ð2rf Sf þrcScÞ

Z L

0

@2w

@t2
dwþ

@2u

@t2
du

 !
dx, (12)

Fd(x,t) and Fi(t) represent, respectively, a distributed force and a concentrated force acting at the point x=xi, d( � ) is the Dirac
delta function, and rf and rc are the densities of the face and core materials. By considering the interface conditions (4),
Eq. (10) can be rewritten only in terms of the core variables, i.e., the mid-surface translations u and w, and the rotation b of
the normal to the mid-plan: Z L

0
NdeþMb

@db
@x
�Mw

@2dw

@x2
þT

@dw

@x
þdb

� �( )
dx¼ dWext�dWkin (13)

with

N¼N1þN2þN3 ¼ 2Ef Sf eþScY�
@e
@t

, e¼ @u

@x
þ

1

2

@w

@x

� �2

,

Mb ¼M2þ
N1�N3

2
hc ¼

Ef Sf hc

2
hc
@b
@x
�hf

@2w

@x2

 !
þ IcY�

@2b
@x@t

,

Mw ¼M1þM3þ
N1�N3

2
hf ¼�Ef 2If þ

Sf h2
f

2

 !
@2w

@x2
þ

Ef Sf hchf

2

@b
@x

,

T ¼
Sc

2ð1þvcÞ
Y�

@2w

@x@t
þ
@b
@t

 !
, de¼ @du

@x
þ
@w

@x

@dw

@x
:

3. Solution procedure

The solution procedure is based on the harmonic balance technique and the finite element method. Contrary to the
common practice in the nonlinear vibration field, the analysis begins with the application of the harmonic balance method.
This means that the harmonic balance method is used to transfer the variational formulation (13) into the frequency
domain. The variables of the resulting equation are functions only of x. Then, a finite element approximation is introduced,
leading to a set of algebraic equations that are solved by an arc-length method. Note that the proposed solution procedure
allows us to consider the viscoelastic behaviour without any simplification.
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3.1. Application of the harmonic balance method

Only transverse harmonic excitations are considered:

Fðx,tÞ ¼
FoðxÞejotþFo ðxÞe�jot

2
: (14)

The frequency response is studied by assuming that harmonic transverse motions exist for moderate amplitudes of
vibration. The validity of this assumption is discussed in Section 4.1. The transverse displacement and the core rotation are
expressed as

wðx,tÞ ¼
woðxÞejotþwo ðxÞe�jot

2
,

bðx,tÞ ¼
boðxÞejotþbo ðxÞe�jot

2
: (15)

With these approximations (15), it can be shown that the axial displacement will contain two harmonic components
(0 and 2o) [16]:

uðx,tÞ ¼ u0ðxÞþ
u2oðxÞe

j2otþu2o ðxÞe
�j2ot

2
: (16)

Similar approximations are used for the virtual displacements:

dwðx,tÞ ¼
dwoðxÞejotþdwo ðxÞe�jot

2
,

dbðx,tÞ ¼
dboðxÞejotþdbo ðxÞe�jot

2
,

duðx,tÞ ¼ du0ðxÞþ
du2oðxÞe

j2otþdu2o ðxÞe
�j2ot

2
: (17)

Eqs. (14)–(17) are inserted into Eq. (13). Considering the expression of the viscoelastic law in the frequency domain (8)–
(9) and integrating over a period of 2p/o, a variational equation governing the forced response of the beam is obtained
(more details on the derivation of Eq. (18) are given in Appendix A):Z L

0
2N0de0þRe N2ode2oþMbo

@dbo
@x
�Mwo

@2dwo

@x2
þTo

@dwo

@x
þdbo

 ! !( )
dx

¼

Z L

0
ReðFodwo Þdxþð2rf Sf þrcScÞo2

Z L

0
Reðwodwoþ4u2odu2o Þdx (18)

with

N0 ¼ ð2Ef Sf þEcð0ÞScÞe0, N2o ¼ ð2Ef Sf þEcð2oÞScÞe2o,

e0 ¼
@u0

@x
þ

1

4

@wo

@x

@wo

@x
, e2o ¼

@u2o
@x
þ

1

4

@wo

@x

� �2

,

de0 ¼
@du0

@x
þ

1

2
Re

@wo

@x

@dwo

@x

 !
, de2o ¼

@du2o
@x
þ

1

2

@wo

@x

@dwo

@x
,

Mbo ¼
Ef Sf hc

2
hc
@bo
@x
�hf

@2wo

@x2

 !
þEcðoÞIc

@bo
@x

,

Mwo ¼�Ef 2If þ
Sf h2

f

2

 !
@2wo

@x2
þ

Ef Sf hchf

2

@bo
@x

, To ¼
EcðoÞSc

2ð1þvcÞ

@wo

@x
þbo

� �
,

where Re( � ) denotes the real part of a complex number. The unknowns of Eq. (18) are the amplitudes wo(x), bo (x), u2; (x),
and u0(x).

3.2. Finite element model

A two-node element based on formulation (18) is developed in this section. In order to satisfy the continuity
requirements, Hermite cubic shape functions are used to approximate the out-of-plane displacement, wo, and Lagrange

linear shape functions are used for the axial displacements, u2; and u0, and the rotation of the core bo. Using Hermite
polynomials, both the values of the transverse displacement and of its first derivative at the node must be degrees of

freedom. Moreover, wo, bo, and u2o are complex quantities. Hence, at the element level, each node will have nine degrees

of freedom: u0, uR
2o, uI

2o, bR
o, bI

o, wR
o, wI

o, @wR
o=@x, and @wI

o=@x (superscripts R and I denote the real and imaginary parts of a

complex number, respectively).
The developed element will be referred to in the rest of the paper as the HBSB (harmonic balance/sandwich beam)

element. It has been implemented in the commercial software ABAQUS/Standard using a user element subroutine UEL
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[28]. The element assembly procedure gives a set of global equations that can be written symbolically as

Iðq,oÞ�o2½M�q¼ F, (19)

where q and F are the assembled vector of nodal unknowns and the nodal external force vector, respectively. [M] is a mass
matrix (note that [M] is not the standard mass matrix, but rather it results from the discretisation of the second term on the
right-hand side of Eq. (18)). I(q,o) is the internal force vector, which depends on frequency because materials with
frequency-dependent behaviour are considered. In the HBSB model, the complex Young’s modulus of the core is given by a
tabular function of frequency. The modulus at a given frequency is simply interpolated from this table of data.

The computation of the forced response of a beam is performed in two steps. First, the solution for a fixed frequency is
computed by incrementally increasing the amplitude of the excitation force to its prescribed value. Then, the frequency is
incremented to obtain the frequency response, keeping the amplitude of the load constant. Response curves of nonlinear
systems may have multivalued regions that cannot be obtained by Newton’s method alone. Thus, the Riks method, in
which the frequency is treated as an additional variable, is used during the second stage of the computations.

4. Numerical results and analysis

This section presents numerical examples, which were employed to test the efficiency and the accuracy of the proposed
approach. For the computations, a regular mesh that includes 20 HBSB elements was used.

4.1. Validation of the HBSB model

4.1.1. Comparison with analyses using direct time integration

Nonlinear transient dynamic computations using direct time integration (Hilbert–Hughes–Taylor scheme) were
performed with the ABAQUS/Standard software. A clamped beam under point excitation at the mid-span is studied (Fig. 1).
Because of symmetry, only half of the beam was modelled. The core material is assumed to behave as a Kelvin–Voigt solid:

s2 ¼ E0 e2þc
@e2

@t

� �
, (20)

where E0 is the storage modulus and c is a parameter that defines the damping. It should be noted that the Kelvin–Voigt
model is a particular case of the more general viscoelastic model considered in Section 2.2. Indeed, Eq. (6) reduces to the
standard form of the Kelvin–Voigt model (20) when the following relaxation function is considered:

YðtÞ ¼ E0

�
1þcdðtÞ

�
, (21)

where d( � ) is the Dirac delta function. In the case of periodic motions, the Kelvin–Voigt model leads to the following
expression for the complex modulus:

EcðkoÞ ¼ E0ð1þ jckoÞ: (22)

Because there is no efficient sandwich beam element available in the ABAQUS element library, the beam was meshed
with 8-node plane-stress elements with biquadratic interpolation functions and reduced integration (ABAQUS CPS8R).
From a mesh convergence study (not further described here for purposes of brevity), a mesh with 3 elements through the
thickness and 111 along the half-length was selected. Also, it was observed that the accuracy of the solution depends
strongly on the time step. In order to obtain reliable results, a fixed time step 500 times smaller than the excitation period
was employed. In most of the simulations, the beam is initially at rest and is subjected to a harmonic excitation (frequency
o and load amplitude F1) until a steady-state solution is reached. In that case, when several steady-state solutions exist for
the considered excitation, simulations give the solution with the lowest vibration amplitude. In order to obtain the solution
with the highest amplitude, the following procedure is used: the computation is started with a higher excitation
(frequency o and load amplitude F2 with F24F1; for the present computations, we have used F2=2F1). Once a steady-state
response is reached, the load amplitude is smoothly decreased to F1. The computation is then continued until a new
steady-state solution (corresponding to F1) is reached.
x

y

core (viscoelastic)
face (elastic)

face (elastic)Clamped
ux= uy =0

Symmetry
ux= 0

Concentred load
( )tQF ωcos2

1=

x

y

x

y

core (viscoelastic)
face (elastic)

face (elastic)Clamped
u = u =0

Symmetry
u = 0

Concentred load
( )tQFy ωcos2

1=

Fig. 1. Configuration considered in the simulations using direct time integration.
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Fig. 2. Frequency response curves of a clamped sandwich beam under concentrated harmonic excitation at the centre for several damping parameters

(c=2.5�10�4 and 5�10�4 s) and load amplitudes (Q=70 and 140 N): comparison between the HBSB model and direct time integration analyses. The

three layers of the beam have a rectangular cross-section with unit width. The following parameters have been considered: L=178�10�3 m,

hf=6�10�4 m, hc=4.5�10�5 m, rf=7,800 kg/m3, rc=1200 kg/m3, Ef=2.1�1011 Pa, vf=0.3, E0=4.12�106 Pa, and vc=0.44.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

40
t / T

|w
|/h

Time integration
HBSB model

40.2 40.4 40.6 40.8 41

Fig. 3. Time response of a clamped beam under excitation at mid-span. The configuration is identical to the one adopted in Fig. 2. The damping parameter

of the core material, the amplitude, and the frequency of the excitation are taken as c=5�10�4 s, Q=140 N, and f=183 Hz, respectively. Note that the time

response obtained with the HBSB model is, by assumption, harmonic.
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In Fig. 2, results derived from the HBSB model are compared with those of the time-domain analyses. Good agreement is
observed between the two methods. The effects of large vibration amplitudes and damping are well predicted by the HBSB
model. The analysis of time responses obtained with computations using direct time integration has shown that the first
harmonic of the transverse displacement is at least 100 times greater than the other harmonics. Hence, for moderate
amplitudes of vibration, higher harmonics have a small influence on the global response of the beam, and the assumption
of harmonic deflection is valid (Fig. 3). Of course, for larger amplitudes of vibration, higher harmonics are likely to play a
more significant role.

Finally, it should be noted that the HBSB model requires much less computation time than the time domain
method. Indeed, the computation of a response curve with the HBSB model on a desktop computer (3 GHz Intel
Pentium 4 processor) takes less than 1 min, in contrast to the 3 h required for the time domain method (about 10
simulations at a given frequency are necessary to estimate the frequency response curve, and each simulation takes about
20 min).
4.1.2. Comparison with experimental results

An experimental study of the forced nonlinear vibration of viscoelastic sandwich beams with clamped ends was
performed by Kovac et al. [14]. The beam was 0.254 m long and 25.4 mm wide. The face layers were 0.203 mm thick and
made of steel. The core was 1.588 mm thick and was composed of a low durometer neoprene. The evolution of the complex
modulus of this material is plotted against frequency in Fig. 4. The beam was forced at its centre with an electromagnetic
device. Clamped boundary conditions were enforced by inserting the ends of the beam between two steel blocks and then
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bolting the blocks. To prevent the crushing of the neoprene layer, the core in the ends of the beam that were in contact
with the support mechanism was replaced by aluminium fillers. Moreover, strain gages were mounted on opposite sides of
the beam in order to check that the mounting procedure did not induce initial axial load or bending moment. A comparison
between the experimental frequency response of Kovac et al. [14], the numerical results obtained with the HBSB model,
and the direct time integration analyses is presented in Fig. 5. The configuration considered for the time-domain
computations is the one depicted in Fig. 1; the beam was meshed with 381 (3*127) elements. A fairly good agreement
between simulation and experiment is observed. The general shapes of the response curves are similar with regard to peak
amplitudes and resonant frequencies. However, there are several differences between the experimental and numerical
results. First, the numerical curves present a more pronounced hardening-type nonlinearity than the experimental curve.
Secondly, a small peak at about 32 Hz is observed experimentally, but this is not predicted by the numerical models. This
frequency is about half of the first natural frequency of the beam measured by Kovac et al. [14] (59 Hz). Therefore, this peak
is probably due to a 1/2 superharmonic resonance. Of course, the HBSB model cannot describe superharmonic responses,
because it is based on the assumption that the transverse displacement is harmonic, as seen in Eq. (15). Time domain
simulations are able to deal with multifrequency responses. However, in the present case, no superharmonic resonance is
predicted. The exact reason for the discrepancies between simulations and experiments is unknown. However, some
possible explanations can be suggested. For example, several studies [20,29,30] have shown that geometric imperfections
can have a significant influence on the nonlinear response of thin beams or plates. Geometric imperfections generally
reduce the hardening nonlinearity of the frequency response and may even cause a softening-type nonlinearity. Moreover,
they may be responsible for the occurrence of superharmonic components in the response [30]. The deviation of the
numerical curves near the main resonance would also be due to the axial elasticity of the supports of the experimental
setup. Indeed, this elasticity implies that the beam does not stiffen as much as with perfectly rigid supports, leading to a
less pronounced hardening nonlinearity of the resonant curve [31]. Finally, it should also be noticed that the force
generated by an electromagnetic forcing device may be significantly different from a pure sinusoid. This distortion of the
excitation may influence the beam response [32].
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4.2. Applications

4.2.1. Viscoelastic sandwich beams with constant complex modulus

In the present section, the response of beams with hysteretic damping is analysed. In the case of harmonic vibrations,
hysteretic damping produces an energy dissipation that does not depend on frequency and, consequently, the complex
Young’s modulus is written as [33]

EcðoÞ ¼ E0

�
1þ jZc sgnðoÞ

�
, (23)

where Zc is the loss factor and sgn( � ) stands for the signum function. It should be noted that Eq. (23) is not compatible with
the viscoelastic law (6) that was used for the derivation of the HBSB model. Therefore, the applicability of Eq. (23) to
nonlinear problems should be checked. Because of geometrical nonlinearity, the strain field may contain several harmonic
components, even if the beam is subjected to a harmonic excitation. Thus, one must verify that Eq. (23) remains valid for
multifrequency responses. A time domain representation of hysteretic damping is [33]

s2ðtÞ ¼ E0 e2ðtÞ�
Zc

p

Z þ1
�1

e2ðtÞ
ðt�tÞ dt

� �
: (24)

This model is often referred to as the ideal hysteretic damping model because, in the case of a harmonic strain, it leads
to an energy dissipated by cycle that is strictly independent of frequency. A flaw of this model is that it induces a non-
causal (anticipatory) behaviour [33,34]. Nevertheless, non-causality is not a concern in the present study because our
attention is restricted to steady-state vibrations. By inserting the time-dependence of strain (8) into Eq. (24), s2(t) can be
written in the following form:

s2ðx,z,tÞ ¼
Xn

k ¼ 0

s2ðx,z,kÞejkotþs2 ðx,z,kÞe�jkot

2

� �

with s2ðx,z,kÞ ¼ E0ð1þ jZc sgnðkoÞÞe2ðx,z,kÞ: (25)

This shows that Eq. (23) can be applied when more than one frequency is present.
Fig. 6 shows the linear and nonlinear frequency response curves of a clamped beam under point excitation at quarter-

span; the vibration amplitude is measured at the position of the load. A large range of frequencies, which includes the first
and second resonances, is considered. One observes that the effect of geometric nonlinearity seems to be more pronounced
near the second resonance. Indeed, even if the vibration amplitude reached at the second resonance is about half that at the
first resonance, the increase of the resonant frequency due to nonlinearity is about 100 Hz in both cases. It is also
interesting to point out that the nonlinear model predicts a greater value of the vibration amplitude at the first resonance
than does the linear model. In the following, the amplitudes obtained with the nonlinear and linear models will simply be
designated as the nonlinear and linear amplitudes, respectively. Concerning the difference between the nonlinear and
linear amplitudes at resonance, the following observations have been made:
�

Fig
ma
A difference is observed only in the case of clamped beams. Moreover, it depends on the position of the excitation
(Fig. 7b). For simply supported beams, the linear and nonlinear amplitudes are identical (Fig. 7a).

�
 Whereas the mode shape at resonance of a clamped beam depends on the vibration amplitude (Fig. 8b), it does not

change when the boundaries are simply supported (Fig. 8a). Note that similar behaviour has already been observed in
the case of thin homogeneous beams [23,35,36] and plates [37,38].
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�
 The analytical model proposed in Ref. [16], which is based on the one-mode Galerkin’s method (where the change in
mode shape is not taken into account), predicts the same amplitude in both the linear and nonlinear cases.

From these observations, one concludes that the difference between the nonlinear and linear amplitudes is related to
the change of the mode shape. In order to understand this phenomenon, let us consider the energy balance for the

sandwich beam. Because the core layer experiences predominantly shear deformations, the average power PD dissipated in
the beam during a cycle can be estimated by

PD ¼
E0ScZco
4ð1þncÞ

Z L

0
jgoj2 dx, (26)

where go is the amplitude of the shear strain in the core layer, given by

go ¼
@wo

@x
þbo: (27)

The average power PW of the external force can be written as

PW ¼�
o
2

QAwI
oA, (28)

where QA is the amplitude of the load, which is assumed to be real, and wI
oA is the imaginary part of the displacement at the

load position. By setting the power dissipated equal to the power of the external load, a relationship between the maximal
vibration amplitude |wmax| and the load amplitude is obtained:

jwmaxj

QA
¼

2ð1þvcÞ

E0ZcL

NW

ND
(29)
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Configuration and material parameters are those of Fig. 6.

Table 1
Values of the numbers ND and NW, Eq. (29), corresponding to the first mode of a clamped sandwich beam for several values of the vibration amplitude.

Configuration and material parameters are identical to those adopted in Fig. 8b.

|wmax|/h ND Load at x=L/2 Load at x=L/4

NW NW/ND NW NW/ND

Linear 0.726 1 1.38 0.567 0.78

1.02 0.742 1 1.35 0.604 0.81

1.97 0.772 1 1.30 0.642 0.83
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with

ND ¼
Sc

jwmaxj
2L

Z L

0
jgoj2 dx and NW ¼�

wI
oA

jwmaxj
:

ND is a dimensionless number that characterizes the effect of the variation in mode shape on the dissipation of energy in
the viscoelastic layer. This effect is due to the fact that the distribution of shear strain changes with the mode shape (Fig. 9).
The number NW quantifies the effect of the mode shape on the power of the external load. Of course, these two numbers
are constant when the mode shape does not depend on the vibration amplitude. As mentioned previously, this situation
occurs with simply supported beams. Therefore, in this case, the vibration amplitude at resonance is proportional to the
amplitude of the load (Fig. 7a).

The values of the numbers ND and NW corresponding to the first mode of a clamped beam are given in Table 1 for several
amplitudes of vibration. It is observed that ND increases with the vibration amplitude. This means that, for the considered
configuration, the change of the mode shape enhances the dissipation of energy in the viscoelastic layer. The evolution of
NW with the vibration amplitude depends on the position of the load. When the load is applied at the centre of the beam,
i.e., where the deflection is at a maximum, NW does not depend on the vibration amplitude. Hence, in this case, the
variation of the mode shape has no effect on the power of the external load, whereas it enhances energy losses due to
damping. That is the reason why, for the beam loaded at mid-span, the nonlinear amplitude of vibration at resonance is
lower than the linear one (Fig. 7b). When the load is applied at quarter-span, NW increases with the vibration amplitude,
indicating that the power of the external load is enhanced by the change in the mode shape. Furthermore, the rate of
increase of NW is greater than that of ND. Therefore, in this case, the nonlinearity induces an increase in the vibration
amplitude at resonance (Fig. 7b).

4.2.2. Sandwich beam with frequency-dependent behaviour

In this section, the response of a simply supported beam, whose core modulus depends strongly on frequency, is
investigated. The considered core material is a polypropylene; Fig. 10 shows the evolution of its storage modulus and loss
factor with frequency at 30 and 60 1C. The linear and nonlinear frequency response curves of the beam are plotted in
Fig. 11. One sees that the vibration amplitude at resonance varies strongly with temperature. The maximum amplitude is
larger at 60 1C, because the material loss factor is smaller at this temperature. Also, the effect of temperature appears to be
more pronounced in the nonlinear case. Indeed, whereas both models predict about the same maximum amplitude of
vibration at 30 1C, the nonlinear amplitude is 23% greater than the linear one at 60 1C. Because a simply supported beam is
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considered, this phenomenon cannot be attributed to a change of the mode shape. Instead, it is related to the frequency
dependence of the core modulus. When geometrically nonlinear effects are taken into account, the increase of the vibration
amplitude, resulting from the change of temperature, generates an increase in the resonance frequency. Consequently,
because the core material has a frequency-dependent behaviour, the change in the material properties is larger than in the
linear case, leading to a more pronounced effect for temperature.
4.2.3. Sandwich beam with initial axial strain

We now investigate the effect of an initial axial strain e0 on the response of a beam. For this purpose, a constant axial
displacement, u0(L)=L e0, is applied at one end of the beam. Frequency-response curves obtained for several values of e0 are
depicted in Fig. 12. One observes that the hardening nonlinearity of the beam response is reduced when a tensile pre-strain
is applied. A compressive strain gives the opposite effect. The hardening-type behaviour of beams is induced by the in-
plane stretching that arises when the vibration amplitude increases. It is therefore somewhat surprising that a tensile axial
pre-strain leads to a less marked nonlinearity. The effect of an axial pre-strain can be explained by considering the
nonlinear vibration of a thin, elastic, initially strained beam. In this case, the following expression for the resonance
frequency can be obtained by using the one-mode Galerkin’s method:

o
oL

� �2

¼ 1þ
3

4

knl

k
A2 (30)
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with

k¼ ESe0

Z L

0

@W

@x

� �2

dxþEI

Z L

0

@2W

@x2

 !2

dx and knl ¼
ES

2L

Z L

0

@W

@x

� �2

dx

" #2

,

where E is the Young’s modulus; S and I are the area and the second moment of the beam cross-section, respectively; A is
the vibration amplitude; oL is the linear natural frequency; and W(x) is a trial function that approximates the transverse
displacement. k and knl are linear and nonlinear modal stiffness coefficients. One observes that the nonlinear stiffness
coefficient knl does not depend on the axial pre-strain. Thus, when a tensile strain is prescribed, only the linear stiffness k

increases and therefore the weight of the nonlinear term is reduced, leading to a less marked hardening-type behaviour.

5. Conclusions

A computational model for the analysis of forced nonlinear vibrations of viscoelastically damped sandwich beams is
proposed. A zig-zag model is used to describe the beam kinematics. An efficient solution procedure, based on the harmonic
balance technique and the finite element method, allows one to compute the nonlinear response in any range of
frequencies with a low computation load. The accuracy of the proposed strategy has been established, at least for moderate
amplitudes of vibration, through comparison with the results of fully nonlinear dynamic simulations using direct time
integration and with experimental data.

The proposed model has permitted us to study the effect of large vibration amplitudes on the damping properties of
sandwich beams. It has been observed that, in the nonlinear regime, the amplitude of vibration at resonance is in general
different from the one predicted by a linear model. This phenomenon is due to the change of the mode shape with the
vibration amplitude and, when materials having a frequency-dependent behaviour are considered, to the increase of the
resonance frequency with the amplitude of vibration. Moreover, it has been shown that an initial axial strain has a
significant influence on the effect of nonlinearity. A tensile strain induces a less-pronounced hardening-type behaviour.

Future work will be focused on extending the model to three-dimensional geometries and multifrequency vibrations.
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Appendix A. Derivation of the frequency domain formulation (18)

Eq. (18) results from the application of the harmonic balance method to the virtual work principle equation (13). The
term associated with the axial force, Nde, is first considered. Using approximations (15)–(16), it can be easily shown that
the axial strain and the virtual strain contain harmonics 0 and 2o:

eðx,tÞ ¼ e0ðxÞþ
e2oðxÞe

j2otþe2o ðxÞe
�j2ot

2
,
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deðx,tÞ ¼ de0ðxÞþ
de2oðxÞe

j2otþde2o ðxÞe
�j2ot

2
: (A.1)

By considering the expression for the axial force, N¼ 2Ef Sf eþScY� ð@e=@tÞ, and the constitutive relations (5)–(9), the
time evolution of N can be written as

Nðx,tÞ ¼N0ðxÞþ
N2oðxÞe

j2otþN2o ðxÞe
�j2ot

2
(A.2)

with

N0 ¼ ð2Ef Sf þEcð0ÞScÞe0 and N2o ¼ ð2Ef Sf þEcð2oÞScÞe2o:

Therefore, the virtual work of the axial force can be written as

Nde¼N0de0þ
1
2ReðN2ode2o Þþharmonic terms: (A.3)

The harmonic terms disappear after integration over a period, and thus:

2

T 0

Z T 0

0
ðNdeÞdt ¼ 2N0de0þReðN2ode2o Þ, (A.4)

where T0=2p/o.
The second term, Mb(qdb/qx), is now considered. Moment Mb is given by

Mb ¼
Ef Sf hc

2
hc
@b
@x
�hf

@2w

@x2

 !
þ IcY�

@2b
@x@t

: (A.5)

Because Mb depends linearly on w and b, with the assumed temporal dependence of the displacement vector (15),
Mb only contains the first harmonic:

Mbðx,tÞ ¼
MboðxÞe

jotþMbo ðxÞe
�jot

2
(A.6)

with

Mbo ¼
Ef Sf hc

2
hc
@bo
@x
�hf

@2wo

@x2

 !
þEcðoÞIc

@bo
@x

:

To obtain the last term of the expression of Mbo, the relationship between the convolution product and complex
Young’s modulus has been used (see Section 2.2). With the use of Eq. (17), the virtual work of Mb can be expressed as

Mb
@db
@x
¼

1

4
Mbo

@dbo
@x
þMbo

@dbo
@x

 !
þharmonic terms: (A.7)

The harmonic terms vanish after integration over a period:

2

T 0

Z T 0

0
Mb

@db
@x

� �
dt¼ Re Mbo

@dbo
@x

 !
: (A.8)

Similarly, it can be shown that

2

T 0

Z T 0

0
Mw

@2dw

@x2

 !
dt¼ Re Mwo

@2dwo

@x2

 !
,

2

T 0

Z T 0

0
ðdWext�dWkinÞdt ¼ Re

�
Fodwoþð2rf Sf þrcScÞo2ðwodwoþ4u2odu2o Þ

�
,

2

T 0

Z T 0

0
T
@dw

@x
þdb

� �� �
dt¼ Re To

@dwo

@x
þdbo

 ! !
: (A.9)

Eqs. (A.4), (A.8), and (A.9) allow us to obtain the frequency-domain formulation (18).
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